Trace-Metal Scavenging from Biomass Syngas with Novel High-Temperature Sorbents

DOE OBP Thermochemical Platform Review Meeting June 7-8, 2005

Thomas K. Gale
Southern Research Institute

- Project Background
- Pathways and Milestones
- Technical Feasibility and Risks
- Competitive Advantage
- Project Overview
- History and Accomplishments
- Plan/Schedule
- Critical Issues and Show-stoppers
- Plans and Resources for Next Stage
- Summary

- Slip through PCDs can damage turbines, and heavy metals can escape to the environment, for IGCC systems and for chemicals and fuels production.
- Feedstock for chemical products are easier to process when stripped of alkaline and toxic metals, prior to processing.
- High-Temperature Sorbents have been shown to effectively react with and capture these metals in vitiated air and in flue gas.
- Eutectics form when sorbents react with metal.
- These sorbents have yet to be tested in reducing environments.
- In addition to the ability to capture metals, sorbents must be shown NOT to create a melted or sticky gue that will clog or damage the barrier filters.

Pathways and Milestones – C-level and Project Milestones

biomass program

Perennial Grasses

<u>Ag Residues</u> <u>Woody Crops</u>

Pulp and Paper

Forest Products

Validate Cost-effective Gas Cleanup Performance

Validate integrated gasification and gas cleanup at pilot scale

Project Milestones	Туре	Performance Expectations			
MDP1 Move on to next phase?	D	Transport Gasifier >70% Removal of Trace Metals, without damaging or plugging the barrier filter.	Jan 2006		
MDP2 Move on to Demonstration?	D	Fluidized Bed >70% Removal of Trace Metals, without damaging or plugging the barrier filter.	Oct 2006		
Project Completion	D	Successfully Demonstrate this Technology at full-scale at the Power System Development Facility (PSDF).	Dec 2007		

Technical Feasibility and Risks

- Sorbents have been shown to effectively and quickly scavenge Na, Pb, Cd, and other metals from vitiated air at high temperatures.
- Sorbents have not yet been tested in reducing environments.
- Sorbents will potentially melt at high temperatures, due to eutectic formation with the captured metals.
- Project subject to test schedules in larger units that are not driven by this project (i.e., PSDF).

Competitive Advantage

- Success will eliminate corrosion issues of gas turbines and make chemical feedstocks from biomass more attractive.
- Events -- Yielding Obsolescence
 - Lack of regulation of Heavy-Metal emissions from IGCC and related systems combined with economic and durable turbine-blade coatings.
 - Indirect-fired cycles that don't need hot-gas cleanup.
 - Effective and more economical cold-gas cleanup for chemical feedstock production.

Project Overview

biomass program

 Project Objective: Develop High-Temperature Sorbent-Injection Strategies that will effectively remove toxic and nuisance metals from syngas without damaging or plugging the barrier filter.

U.S. Department of Energy Golden Field Office

Dr. John Scahill, Project Manager

Southern Research Institute

Overall Project Management
Direct and Conduct Experimental Program
Direct Modeling Effort

UAB

Graduate Research Assistants Graphite Furnace-AA Analysis Modeling/Testing

Southern Company PSDF Staff

Assist with Experimental Plan and Full-Scale Demonstration

Gas Technology Institute

Operate High-Temperature Slipstream at RENUGAS Gasifier

History and Accomplishments

- New Project
- Accomplishments
 - Obtained site-access agreement at PSDF.
 - Designed reaction chamber and sorbent and char feeders for slipstream tests at PSDF.
 - The syngas cleanup model development continues, building upon the present Naspeciation model.
 - Current Efforts include: adding K-speciation and heterogeneous mechanisms to the model.
 - Including sorbent/metal interactions.

Plan/Schedule

Task and Subtask ID	Quarter #	1	2	3	4	5	6	7	8	9	10	11	12
1.0 Slipstream at PSDF	+				>								
1.1 Sorbent screening at PSDF													
1.2 Parametric investigation at PSDF					→								
2.0 Slipstream testing or	n GTI facility												
2.1 Sorbent screening a	t GTI												
2.2 Parametric investiga	tion at GTI												
3.0 Demonstration									•			ightharpoonup	
3.1 Design, build, and install													
3.2 Demonstrate optimized techn.											•	-	
3.3 Sampling and Analysis											•	\rightarrow	
4.0 Model advancement	•												
4.1 Contributions from slipstream													
4.2 Contributions from full-scale													
5.0 Low -temp and lab ea	xperiments												
6.0 Graphite furnace-AA analysis												-	
7.0 Reporting													
MILESTONE Decision Point	s (MDP)		MDP1		→		MDP2		>				

Critical Issues and Show-stoppers

biomass program

Critical Performance Parameters:

- How does a syngas (i.e. reducing) environment affect sorbent/metal reaction mechanisms?
- Can metal be captured without plugging or damaging the barrier filters?
- How does temperature affect capture and melting?

Show Stoppers:

- No capture in reducing environment.
- Ineffective capture without severe melting.

Plans and Resources for Next Stage

- If the early project stages are successful:
 - Full-scale PSDF demonstration in the third year.
- If the technology is shown to be effective and economic by the end of the project:
 - May become a standard technology that is used and further developed during all PSDF test runs.
 - Possible Full-Scale Demonstration in the RENUGAS gasifier.
 - Possible Demonstration at the 250 MW Gasifier to be built in Orlando Florida.
- Commercialization Partners:
 - Southern Company
 - Gas Technology Institute

- Southern Research Institute has recently begun this project to develop high-temperature sorbents for scavenging trace metals from syngas, without damaging the barrier filter.
- We are preparing for slipstream tests at the PSDF this summer. Modeling efforts are going forward.
- We plan to complete our current efforts early next year, followed by additional slipstream testing in the RENUGAS gasifier at GTI.
- Demonstration of this technology is planed for 2007 in the full PSDF unit, if the initial stages of the project indicate a high probability of success.

- Total Project Funding = \$962,882.00
 - -DOE = \$769,378.00
 - Cost Share = \$193,504.00
- Fiscal Year 2005 = \$323,756.00
 - -DOE = \$259,005.00
 - Cost Share = \$64,751.00